Skip to main content

Senior ML Specialist Solutions Architect, ML Service Solution Architects

Job ID: 2544426 | Amazon Web Services, Inc. - A97


Are you passionate about Artificial Intelligence, Machine Learning and Deep Learning? Are you passionate about helping customers build solutions leveraging the state-of-the-art AI/ML/DL tools on Amazon Web Service (AWS)? Come join us!

At Amazon, we’ve been investing deeply in artificial intelligence for over 20 years, and many of the capabilities customers experience in our products are driven by machine learning.’s recommendations engine is driven by machine learning (ML), as are the paths that optimize robotic picking routes in our fulfillment centers. Our supply chain, forecasting, and capacity planning are also informed by ML algorithms. Alexa is fueled by Natural Language Understanding and Automated Speech Recognition deep learning; as is Prime Air, and the computer vision technology in our new retail experience, Amazon Go. We have thousands of engineers at Amazon committed to machine learning and deep learning, and it’s a big part of our heritage.

Within AWS, we’re focused on bringing that knowledge and capability to customers through three layers of the AI stack: 1) Frameworks and Infrastructure with tools like Apache MxNet and TensorFlow, 2) Machine Learning Platforms such as Amazon SageMaker for data scientists, and, 3) API-driven Services like Amazon Lex, Amazon Polly, Amazon Transcribe, Amazon Comprehend, and Amazon Rekognition to quickly add intelligence to applications with a simple API call.

AWS is looking for a Machine Learning Solutions Architect (ML SA), who will be the Subject Matter Expert (SME) for helping customers in the AMERICAS design solutions that leverage our ML services. As part of the team, you will work closely with customers to enable large-scale use cases, design ML pipelines, and drive the adoption of AWS for the AI/ML platforms. You will interact with other SAs in the field, providing guidance on their customer engagements, and you will develop white papers, blogs, reference implementations, and presentations to enable customers to fully leverage AI/ML on AWS. Additionally, as the voice of the customer, you will work closely with the service teams, and submit product feature requests to drive the platform forward.

You must have deep technical experience working with technologies related to artificial intelligence, machine learning and/or deep learning. A strong mathematics and statistics background is preferred in addition to experience building complex machine learning models. You will be familiar with the ecosystem of software vendors in the AI/ML space, and will leverage this knowledge to help AWS customers in their selection process.

If you are a qualified and accepted candidate, you may work out of any of the following cities: Pacific Time Zone - Southern California (i.e. south of San Diego to north of Los Angeles). Travel up to 50% across the AMERICAs may be possible.

Key job responsibilities
- Thought Leadership – Evangelize AWS ML services and share best practices through forums such as AWS blogs, white-papers, reference architectures and public-speaking events such as AWS Summit, AWS re:Invent, etc.
- Partner with SAs, Sales, Business Development and the AI/ML Service teams to accelerate customer adoption and revenue attainment in the AMERICAS for Amazon SageMaker.
- Act as a technical liaison between customers and the AWS SageMaker services teams to provide customer driven product improvement feedback.
- Develop and support an AWS internal community of ML related subject matter experts in the AMERICAS.

We are open to hiring candidates to work out of one of the following locations:

New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA


- 8+ years of specific technology domain areas (e.g. software development, cloud computing, systems engineering, infrastructure, security, networking, data & analytics) experience
- 3+ years of design, implementation, or consulting in applications and infrastructures experience
- 3+ years of experience in design/implementation/consulting for Machine Learning/AI/Deep Learning solutions
- 1+ years of experience with one or more Deep Learning frameworks such as TensorFlow and PyTorch.
- 3+ years experience with developing Machine learning solutions and architectures for Natural language processing domain.
- 5+ years professional experience in software development in languages related to ML like Python or R.
- Experience working with RESTful API and general service-oriented architectures.
- 3+ years of experience in technical architecture, design, deployment and operations for AI platforms, standards, protocols and devices


- 5+ years of industry experience in predictive modeling and analysis
- Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relationships
- Consulting experience and track record of helping customers with their AI needs
- Publications or presentation in recognized Machine Learning, Deep Learning and Data Mining journals/conferences ·
- Experience with AWS technologies like SageMaker, Redshift, S3, EC2, Data Pipeline, Kinesis & EMR
- Knowledge of Apache Spark
- Able to write production level code, which is well-written and explainable
- Experience using ML libraries, such as scikit-learn, caret, mlr, mllib
- Experience working with GPUs to develop models
- Experience handling terabyte size datasets
- Track record of diving into data to discover hidden patterns
- Familiarity with using data visualization tools · Knowledge and experience of writing and tuning SQL
- Past and current experience writing and speaking about complex technical concepts to broad audiences in a simplified format
- Experience giving public presentations

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, please visit

Pursuant to the San Francisco Fair Chance Ordinance, we will consider for employment qualified applicants with arrest and conviction records.

Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $122,900/year in our lowest geographic market up to $239,000/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit Applicants should apply via our internal or external career site.